INSTITUTO NACIONAL DE HIDRÁULICA

ESTUDIO

Diagnóstico río Andalién 2015, provincia de Concepción, Región del Bío Bío.

ZONA SUR

DICIEMBRE DE 2015
MINISTERIO DE OBRAS PÚBLICAS
DIRECCIÓN DE OBRAS HIDRÁULICAS

"DIAGNÓSTICO RÍO ANDALIÉN 2015,
PROVINCIA DE CONCEPCIÓN,
REGIÓN DEL BIO BÍO"

INFORME FINAL
PEÑAFLOR, REGIÓN METROPOLITANA
DICIEMBRE 2015
Mandante:

Ministerio de Obras Públicas
Dirección de Obras Hidráulicas

Estudio:
DIAGNÓSTICO RIO ANDALIÉN 2015, PROVINCIA DE CONCEPCIÓN, REGIÓN DEL BIO BÍO
Informe Final

Fecha:
Diciembre 2015

Inspector Fiscal DOH

María Cecilia Montes L.

Ingeniero Civil, Departamento de Obras Fluviales.

Equipo de Trabajo:
Contraparte Técnica INH:

Francisco Ulloa C
Luis Zamorano R.
Luis Esquivel V.
Bastián Venegas

Ingeniero Civil, Ingeniería y desarrollo
Ingeniero Civil, Jefe Unidad Ingeniería y Desarrollo
Dibujante técnico, Unidad de Operaciones
Dibujante técnico, Unidad de Operaciones

Aprobado por:
Eduardo Santibáñez Weidmann
Luis Zamorano Riquelme.

Ingeniero Civil, Jefe de División Técnica.
Ingeniero Civil, Jefe Unidad Ingeniería y Desarrollo.

A Para aprobación del mandante
FUC LZR ESW
Rev. Descripción
Por Revisó Votó
Fecha

Clasificación: aprobación DOH

"DIAGNÓSTICO RIO ANDALIÉN 2015, PROVINCIA DE CONCEPCIÓN, REGIÓN DEL BIO BÍO" - Informe Final
1 INTRODUCCION...1
 1.1 DESCRIPCIÓN ...1
 1.2 ZONA DE ESTUDIO ..1
 1.3 OBJETIVOS ..3
 1.3.1 Objetivos Generales ..3
 1.3.2 Objetivos específicos ...3
 1.3.3 Alcances ..3
 1.4 DESARROLLO Y PRESENTACIÓN DEL INFORME ...5
2 REVISIÓN DE ANTECEDENTES ..6
3 METODOLOGÍA ..8
 3.1 MODELACIÓN NUMÉRICA ..8
 3.1.1 Generalidades Modelo Numérico Iber ...8
 3.2 COEFICIENTES DE RUGOSIDAD ..9
 3.3 CAUDALES DE ESTUDIO ..10
 3.4 CONDICIÓN DE BORDE AGUAS ABajo ..11
 3.5 ÁREA DE MODELACIÓN ...12
 3.6 CASOS DE MODELACIÓN ...12
4 MODELACIÓN NUMÉRICA ..13
 4.1 CARACTERÍSTICAS DE LA GRILLA UTILIZADA ..13
 4.1.1 Sectorizaciones ..13
 4.1.2 Parámetros de la malla ..14
 4.2 CONDICIONES DE BORDE ..15
 4.2.1 Topografía ..15
 4.2.2 Condiciones de Contorno ...16
 4.2.3 Rugosidad ...16
 4.3 PUENTES ...17
 4.4 PARÁMETROS DE INICIACIÓN DEL MODELO ..17
5 RESULTADOS ..19
 5.1 ANÁLISIS DE FUNCIONAMIENTO DE PUENTES ...20
 5.2 ANÁLISIS DE REVANCHAS ..21
5.3 ÁREAS DE DESBORDE PERIODO DE RETORNO 2 AÑOS... 23
5.4 ÁREAS DE DESBORDE PERIODO DE RETORNO 5 AÑOS... 27
5.5 ÁREAS DE DESBORDE PERIODO DE RETORNO 10 AÑOS ... 30
5.6 ÁREAS DE DESBORDE PERIODO DE RETORNO 25 AÑOS ... 34
5.7 ÁREAS DE DESBORDE PERIODO DE RETORNO 50 AÑOS ... 39
5.8 ÁREAS DE DESBORDE PERIODO DE RETORNO 100 AÑOS ... 43
5.9 ÁREAS DE DESBORDE PERIODO DE RETORNO 100 AÑOS MAYORADO............................... 47
6 CONCLUSIONES Y RECOMENDACIONES.. 51
 6.1 RECOMENDACIONES ... 52
7 Bibliografía... 53
ANEXOS.. 54
 Anexol – Análisis de Topografía... 55
 Anexoll – Análisis de sensibilidad estructuras... 58
 Anexo III Planos.. 60
 Anexo IV – Tablas revanchas.. 67
INDICE DE TABLAS Y FIGURAS

LISTADO DE TABLAS

Tabla 3–1: Valores del coeficiente de rugosidad o N de Manning, cauces naturales...10
Tabla 3–2: Caudales en estudio [m³/s]. ..10
Tabla 3–3: Caudales de descarga para los distintos periodos de retorno en estudio (m³/s).............................11
Tabla 3–4: Altura conocida aguas abajo del modelo numérico..11
Tabla 4–1: Parámetros de entrada de puentes, para iber..17
Tabla 4–2: Configuración del modelo numérico...17
LISTADO DE FIGURAS

Figura 1-1: Ubicación zona de estudio..2
Figura 3-1 : Área de modelación..12
Figura 4-1 : Sectorizaciones de tamaños de malla..13
Figura 4-2 : Parámetros de calidad de malla...15
Figura 4-3 : Condiciones de borde laterales...16
Figura 5-1 : Esquema de zonas de desbordes y colores de modelos...20
Figura 5-2 : Cota superficie de agua en zona con puentes modelo 1...20
Figura 5-3 : Cota superficie de agua en zona con puentes modelo 2...21
Figura 5-4: Áreas de inundación de las zonas 1 a la 3...23
Figura 5-5: Áreas de inundación de las zonas 4 a la 7..24
Figura 5-6: Velocidades a lo largo de los modelos para T=2 años...25
Figura 5-7: Profundidades de escurrimiento a lo largo de los modelos para T=2 años..............................26
Figura 5-8: Esquema perfil 8+100..27
Figura 5-9: Áreas de inundación de las zonas 1 a la 3...27
Figura 5-10: Áreas de inundación de las zonas 4 a la 7...28
Figura 5-11: Velocidades a lo largo de los modelos para t=5 años. ...29
Figura 5-12: Profundidades de escurrimiento a lo largo de los modelos para t=5 años.............................30
Figura 5-13: Áreas de inundación de las zonas 1 a la 3...31
Figura 5-14: Áreas de inundación de las zonas 4 a la 7...32
Figura 5-15: Velocidades a lo largo de los modelos para t=10 años...33
Figura 5-16: Profundidades de escurrimiento a lo largo de los modelos para t=10 años...........................34
Figura 5-17: Áreas de inundación de las zonas 1 a la 3...35
Figura 5-18: Áreas de inundación de las zonas 4 a la 7...36
Figura 5-19: Velocidades a lo largo de los modelos para t=25 años...37
Figura 5-20: Profundidades de escurrimiento a lo largo de los modelos para t=25 años..........................38
Figura 5-21: Áreas de inundación de las zonas 1 a la 3...39
Figura 5-22: Áreas de inundación de las zonas 4 a la 7...40
Figura 5-23: Velocidades a lo largo de los modelos para t=50 años..41
Figura 5-24: Profundidades de escurrimiento a lo largo de los modelos para t=50 años..........................42
Figura 5-25: Áreas de inundación de las zonas 1 a la 3...43
Figura 5-26: Áreas de inundación de las zonas 4 a la 7...44
Figura 5-27: Velocidades a lo largo de los modelos para t=100 años..45
Figura 5-28: Profundidades de escurrimiento a lo largo de los modelos para t=100 años..........................46
Figura 5-29: Áreas de inundación de las zonas 1 a la 3..47
Figura 5-30: Áreas de inundación de las zonas 4 a la 7..48
Figura 5-31: Velocidades a lo largo de los modelos para t=100 años..49
Figura 5-32: Profundidades de escurrimiento a lo largo de los modelos para t=100 años..................50
Figura 7-1 : Ruta penco..55
Figura 7-2 : Puente Andalíen..55
Figura 7-3 : Puente Ferrocarril...56
Figura 7-4 : Combinación de fuentes topográficas...56
Figura 7-5 : Sectores bajo la cota 1.9 m (rojo)..57
Figura 7-6 : Sector Puentes..59
Figura 7-7 : Esquema puente Andalíen, en verde la sección abierta..59
1 INTRODUCCION

1.1 Descripción

En el año 2006, intensas precipitaciones ocurridas en el mes de julio, generaron desbordes en el río Andalién y sus esteros afluentes Nongué y Palomares, con las consiguientes inundaciones de un vasto sector urbano de la ciudad de Concepción, afectando a una población estimada en más de 100.000 habitantes, junto al patrimonio público y privado. Hechos que dieron origen al proyecto “Diseño de Obras Fluviales Río Andalién, Esteros Nongué y Palomares, VIII Región del Biobío”.

A la fecha, se han ejecutado el 75% las obras proyectadas, por lo que es necesario contar con un diagnóstico actualizado de la capacidad de conducción del río Andalién y de las áreas inundables, con el objeto de identificar la vulnerabilidad actual de la comunidad ribereña y acotar el alcance de las inundaciones a las que están afectadas, así como su magnitud (superficie cubierta y altura de agua).

Dicho diagnostico se realiza mediante la modelación matemática bi-dimencional del tramo en estudio, con el software libre Iber. Las modelaciones incorporan las obras existentes y modelaciones con las obras fluviales por construir, considerando los caudales de diseño determinados en el proyecto de las obras fluviales ya construidas.

El Instituto Nacional de Hidráulica (INH) es un organismo de excelencia en investigación aplicada en disciplinas hidráulicas. Se caracteriza por realizar estudios en modelos reducidos en obras hidráulicas, sanitarias y marítimas, obteniendo información del funcionamiento de obras para futuros proyectos hidráulicos. Además de contar con infraestructura que permite la investigación científica y tecnológica en el campo de los desbordes de fluidos.

Por lo que la Dirección de Obras Hidráulicas del Ministerio de Obras Públicas, en adelante, y el INH suscribieron un convenio, para la ejecución de la consultoría denominada “DIAGNÓSTICO RÍO ANDALIÉN 2015, PROVINCIA DE CONCEPCIÓN, REGIÓN DEL BIO BÍO” el cual tiene por objetivo principal desarrollar los estudios necesarios que permitan obtener un diagnóstico actualizado del comportamiento hidráulico-fluvial del río Andalién en el sector en estudio.

1.2 Zona de estudio

El río Andalién nace de la unión de los esteros Poñen, que viene de la línea de displusio del norte, y Curapalihue, que viene del sur. Esta cuenca forma parte de la VIII región del Bío Bío, cubre 780 km² y su curso 36 km de longitud. Describe innumerables vueltas entre las cerrilladas de la cordillera costera, la última de las cuales es un arco
abierto al sur que bordea la ciudad de Concepción, donde en plena llanura aluvial suele dividirse en dos o más brazos antes de vaciarse en un gran ensanchamiento de la costa sur de la bahía de Concepción. Su gasto es muy variable y sensible a las lluvias que caen en la cordillera de la Costa. (DGA, 2004).

El estudio se desarrolló, dentro de las comunas de Concepción, Penco y Talcahuano, en una extensión de 9 km.

![Mapa de Chile y Concepción](image)

Figura 1-1: Ubicación zona de estudio.
1.3 Objetivos

1.3.1 Objetivos Generales

Obtener un diagnóstico actualizado del comportamiento hidráulico-fluvial del río Andalién, a través de un modelo matemático bidimensional libre que represente con la mayor precisión posible las zonas inundables ribereñas asociadas, incorporando la componente sedimentológica. Lo anterior, para identificar la vulnerabilidad actual de los terrenos ribereños, ante eventuales inundaciones.

1.3.2 Objetivos específicos

1. Efectuar una modelación hidráulica del río Andalién, en su condición actual, es decir, incluyendo las obras existentes; considerando los caudales de diseño determinados en el proyecto de las obras fluviales construidas.

2. Efectuar una modelación hidráulica del río Andalién considerando las obras proyectadas que falta por construir y el sedimentador proyectado en el sector de Trinitaria; considerando los caudales de diseño determinados en el proyecto de las obras fluviales construidas.

3. Representar en un plano de planta los resultados de la modelación identificando las áreas afectas a inundación, en aquellos sectores donde la extensión de la topografía lo permita, y puntos de desborde. Esta representación se debe hacer para las dos situaciones modeladas antes indicadas.

4. Entregar planos de planta general a escala 1:10.000 para todo el río y escala 1:5.000 para el tramo Cosmito - pte. Alonso de Rivera, con el resultado de las modelaciones. Además, planos de planta con mayor detalle escala 1:2.000, junto con el perfil longitudinal escala a 1:2.000 y 1:200, y perfiles transversales a escala 1:1.000.

5. Entregar un informe con el desarrollo detallado de las actividades y con una descripción e interpretación de los resultados de la modelación.

1.3.3 Alcances

- Los límites laterales del modelo numérico están definidos por la disponibilidad de la información topográfica entregada por el mandante. En el caso que el área de inundación alcance dicho límite no dará pie para realizar topografías adicionales.

- El presente estudio no realizó el estudio hidrológico, por lo que se utilizó la información generada para el proyecto “DISEÑO DE OBRAS FLUVIALES RÍO ANDALIÉN, ESTEROS NOUNGUÉN Y PALOMARES, VIII REGIÓN DEL BIO BIO”

- Debido a que el objetivo de este estudio no es ver el efecto de los pilares en el comportamiento fluvial, sino más bien verificar el funcionamiento de las
obras de canalización proyectadas, los pilares de los puentes no se incorporan dentro de la malla de modelación si no como una reducción de la sección disponible en la zona de puentes (Método incorporado en el modelo numérico). Por otra parte este método disminuye 10 veces el tiempo de cómputo.

- El modelo numérico no considera cambios morfológicos en el cauce tomando en cuenta que; no se tienen los antecedentes necesarios para realizar una modelación de ese tipo como por ejemplo datos de calibración; el objetivo principal del estudio es el diagnostico de las obras construidas y a construir en el cauce del río Andalién, por lo que considerando que la construcción del sedimentador controlaría el gasto de sólido; modelos de tipo morfológicos requieren de un mayor tiempo para generar los modelos quedando fuera de los plazos del presente estudio. Teniendo en cuenta lo expuesto para representar al aumento de la cota de inundación producto de la depositación de sedimentos observada en eventos pasados, se mayoró el caudal de periodo de retorno de 100 años según queda explicado en el documento.
1.4 Desarrollo y presentación del Informe.

Para alcanzar los objetivos ya planteados y dar cumplimiento a lo dispuesto en los términos de referencia del estudio, el documento se dividió en 6 capítulos, de las cuales se presenta una breve reseña a continuación:

Capítulo 1, Introducción: Se presenta una descripción de la génesis del proyecto, la zona de emplazamiento del estudio y los objetivos generales y específicos.

Capítulo 2, Revisión de antecedentes: Aquí se encuentran descriptos los antecedentes entregados por la DOH y de los aspectos utilizados en el estudio.

Capítulo 3, Metodología: En el capítulo metodología se presenta una descripción de la forma en que se utilizará la información disponible.

Capítulo 4, Modelación Numérica: En este capítulo se entregan antecedentes del modelo numérico y de todos los parámetros utilizados en ellos, como condiciones de borde, topografía, rugosidad, parámetros de mallado entre otros.

Capítulo 5, Resultados: En este capítulo se entregan los resultados de los modelos numéricos generados, en particular los resultados de áreas de desborde.

Capítulo 6, Conclusiones: Aquí se presentan las conclusiones del estudio

Anexos, Aquí e incluye un análisis de la información topográfica, así como un análisis de sensibilidad de los tiempos de computo por la inclusión de los pilares dentro de la malla de modelado. Se adjunta también una serie de planos solicitados dentro de las bases del presente estudio.
2 REVISION DE ANTECEDENTES

Para llevar a cabo la modelación numérica es necesario contar antecedentes que permitan representar las condiciones de escurrimiento del cauce y esteros en cuestión. Por tal razón, se realiza una revisión exhaustiva de los antecedentes entregados por el mandante y se extraen aquellos que son de utilidad en el presente proyecto.

Se recopilaron y revisaron antecedentes varios seleccionando aquellos relacionados con:

- Topografía
- Hidrología
- Geometría del cauce

A continuación se describe algunos de los antecedentes de mayor relevancia para el desarrollo del estudio:

- Estudio Diseño de Obras Fluviales Río Andalién, Esteros Nonguén y Palomares, VIII Región del Bío Bío” EIC 2008

Uno de los objetivos del proyecto es realizar el diseño a nivel de ingeniería de detalle que permita la construcción de las obras que dan solución a los problemas señalados en el Diagnóstico y que constituya la mejor solución de acuerdo al interés fiscal entre otros, por lo que en él se encuentran da datos hidrológicos y de condiciones de borde útiles para el modelo matemático.

Este estudio comprende el diseño a nivel de ingeniería de detalle de las obras que dan solución a los problemas detectados por el estudio de Diagnóstico. (PRISMA, 2004)

- Estudio de Factibilidad y Diseño Definitivo de las obras de regulación y retención de sedimentos en río Andalién, Región del Biobío”, año 2011 y Planos.

El proyecto “Diseño de obras fluviales Río Andalién, esteros Nonguén y Palomares, VIII Región del Bio Bio” desarrollado por EIC Ingenieros Consultores contiene información clave para el desarrollo del estudio, tal como la geometría del cauce y los esteros presentes en el área de estudio. Esto se encuentra condensado en los planos de las etapas que se han ejecutado.

En este proyecto se realizó un levantamiento Lidar con resolución de 1x1 m, esta información se utilizó para complementar los perfiles transversales de los planos as Built, extendiendo el área de modelación.

- Levantamiento topográfico Río Andalién sector Cosmito–Puente Alonso de Rivera, Provincia de Concepción Región del Bio Bío” 2014
El estudio desarrollado por ICSA contiene la información topográfica entre sector de Cosmito y Puente Alonso de Rivera (km 6+800 y 10+860), este estudio se efectuó con el fin actualizar la topografía y batimetría del proyecto generado el año 2008, tiempo en el cual el curso del río Andalién sufrió modificaciones por efectos de movimientos de tierra generados en ciertas áreas, con el fin de mitigar probables subidas del río.

- **Planos as-built**
 - Obras construidas en la Etapa 1, entre el puente Alonso de Rivera y la descarga al estero Palomares, año 2013.
 - Obras construidas en la Etapa 2, entre el puente Las Ballenas y sector Cosmito, año 2015.

 Esta información se utilizó para digitalizar y posicionar los perfiles transversales para la generación del modelo de terreno utilizado en el modelo numérico del sector de las obras.

- **Modelo de Terreno Digital del Río Andalién, en formato DEM o TIN.**
3 METODOLOGIA

3.1 Modelación Numérica

Las modelaciones numéricas se realizaron con el modelo numérico Iber diseñado para la simulación de flujo turbulento en lámina libre en régimen no permanente, y de procesos medioambientales en hidráulica fluvial. El rango de aplicación de Iber abarca la hidrodinámica fluvial, la simulación de rotura de presas, la evaluación de zonas inundables, el cálculo de transporte de sedimentos y el flujo de marea en estuarios.

3.1.1 Generalidades Modelo Numérico Iber

La descripción del modelo Iber fue realizada utilizando la información disponible en su página web (www.iberaula.es), y desde su manual de referencia.

Iber es un modelo numérico de simulación de flujo turbulento en lámina libre en régimen no permanente, y de procesos medioambientales en hidráulica fluvial. El rango de aplicación de Iber abarca la hidrodinámica fluvial, la simulación de rotura de presas, la evaluación de zonas inundables, el cálculo de transporte de sedimentos y el flujo de marea en estuarios. Fue desarrollado en colaboración por el Grupo de Ingeniería del Agua y del Medio Ambiente, GEAMA (Universidad de A Coruña, UDC) y el Instituto FLUMEN (Universitat Politècnica de Catalunya, UPC, y Centro Internacional de Métodos Numéricos en Ingeniería, CIMNE), en el marco de un Convenio de Colaboración suscrito entre el CEDEX y la Dirección General del Agua.

El modelo Iber consta actualmente de 3 módulos de cálculo principales: un módulo hidrodinámico, un módulo de turbulencia y un módulo de transporte de sedimentos. Todos los módulos trabajan sobre una malla no estructurada de volúmenes finitos formada por elementos triangulares o cuadriláteros.

En el módulo hidrodinámico, que constituye la base de Iber, se resuelven las ecuaciones de aguas someras bidimensionales promediadas en profundidad (ecuaciones de St. Venant 2D). Dichas ecuaciones asumen las hipótesis de distribución de presión hidrostática y distribución uniforme de velocidad en profundidad. La hipótesis de presión hidrostática se cumple razonablemente en el flujo en ríos, así como en las corrientes generadas por la marea en estuarios y zonas costeras. La hipótesis de distribución uniforme de velocidad en profundidad se cumple de forma habitual en ríos y estuarios, siempre y cuando no existan procesos relevantes de estratificación debido a diferencias de salinidad, de temperatura o al viento.

El módulo hidrodinámico de Iber tiene la capacidad de considerar los siguientes procesos:

- Flujo no estacionario en régimen supercrítico y en régimen subcrítico.
- Formación de resaltos hidráulicos no estacionarios.
- Fricción de fondo según formulación de Manning.
- Frentes de inundación no estacionarios.
- Tensiones turbulentas calculadas según diversos modelos de turbulencia.
- Variación temporal de la cota del fondo debido a transporte de sedimentos.

3.1.1.1 **Condiciones de contorno**

En un problema bidimensional es necesario distinguir entre dos tipos de contornos: abiertos y cerrados.

Los contornos cerrados, también llamados contornos de tipo pared, son impermeables, no permitiendo el paso del fluido a través de ellos. Iber es capaz de representar las siguientes condiciones de contorno:

- Condiciones de contorno abierto tipo: hidrograma, nivel de marea, vertido crítico, vertedero, curva de gasto.
- Condiciones de contorno tipo pared: deslizamiento libre, fricción de pared según ley logarítmica.
- Condiciones de contorno internas: puentes, vertederos, compuertas, alcantarilla.
- Formación de brecha en presas para estudios de rotura de presas.
- Infiltración según las formulaciones de: Green-Ampt, Horton, Lineal.
- Rozamiento superficial por viento según formulación de Van Dorn.
- Salida de resultados de Riesgo según RDPH.
- Utilidades para el cálculo de la zona de flujo preferente según RDPH.

3.1.1.2 **Módulo de Turbulencia**

El módulo de turbulencia permite incluir las tensiones turbulentas en el cálculo hidrodinámico, pudiéndose utilizar para ello diferentes modelos de turbulencia para aguas someras con diferente grado de complejidad. En la versión actual (2.3) se incluyen un modelo parabólico, un modelo de longitud de mezcla y un modelo k-ε.

3.2 **Coeficientes de rugosidad**

El cálculo de los coeficientes de rugosidad para cada uno de los cauces en estudio se desarrolló utilizando fotografías de los ríos y la estimación del coeficiente de Manning según el procedimiento que se encuentra en el Manual de Carreteras -Volumen 3, Junio 2004 (MDC v3). El cual especifica la utilización de la Tabla 3-1.
<table>
<thead>
<tr>
<th>TIPO DE CANAL</th>
<th>MINIMO</th>
<th>MEDIO</th>
<th>MÁXIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cursos Menores (Ancho Superficial < 30 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) De llanuras o Planicies (Baja Pendiente)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Límites, rectos, o capacidad plena sin vados o charcas profundas</td>
<td>0.025</td>
<td>0.030</td>
<td>0.033</td>
</tr>
<tr>
<td>Idem, con más piedras y malezas</td>
<td>0.033</td>
<td>0.035</td>
<td>0.045</td>
</tr>
<tr>
<td>Límites, con curvas, algunas pozas y bancos de arena</td>
<td>0.035</td>
<td>0.040</td>
<td>0.046</td>
</tr>
<tr>
<td>Idem, con algo de maleza y piedras</td>
<td>0.040</td>
<td>0.045</td>
<td>0.050</td>
</tr>
<tr>
<td>Idem, a niveles bajos y secciones y pendentones irregulares</td>
<td>0.045</td>
<td>0.048</td>
<td>0.055</td>
</tr>
<tr>
<td>Idem anterior pero más pedregosa</td>
<td>0.050</td>
<td>0.050</td>
<td>0.060</td>
</tr>
<tr>
<td>Tramos descartados con maleza, pozas profundas</td>
<td>0.075</td>
<td>0.070</td>
<td>0.080</td>
</tr>
<tr>
<td>Tramos con mucha maleza, pozas profundas o cauces de crecida con árboles y arbustos</td>
<td></td>
<td>0.100</td>
<td>0.150</td>
</tr>
<tr>
<td>b) De Montaña (Alta Pendiente), sin vegetación en el canal, ribazas usualmente empinadas, árboles y arbustos sumergidos a lo largo de las riberas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fondo: grava, riojo y pocos bolones</td>
<td>0.030</td>
<td>0.040</td>
<td>0.050</td>
</tr>
<tr>
<td>Fondo: riojo y grandes bolones</td>
<td>0.040</td>
<td>0.050</td>
<td>0.070</td>
</tr>
<tr>
<td>Pluviales de inundación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Pastizales, sin Matorrales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasto pequeño</td>
<td>0.025</td>
<td>0.030</td>
<td>0.035</td>
</tr>
<tr>
<td>Pasto alto</td>
<td>0.030</td>
<td>0.035</td>
<td>0.050</td>
</tr>
<tr>
<td>b) Áreas Cultivadas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin cosechas</td>
<td>0.025</td>
<td>0.030</td>
<td>0.040</td>
</tr>
<tr>
<td>Cultivos creados, plantación en surcos</td>
<td>0.025</td>
<td>0.035</td>
<td>0.045</td>
</tr>
<tr>
<td>Cultivos creados, plantación a campo traviesa</td>
<td>0.030</td>
<td>0.040</td>
<td>0.050</td>
</tr>
<tr>
<td>c) Matorrales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matorrales dispersos, grandes malezas</td>
<td>0.035</td>
<td>0.050</td>
<td>0.070</td>
</tr>
<tr>
<td>Pocos matorrales y árboles, en invierno</td>
<td>0.035</td>
<td>0.050</td>
<td>0.060</td>
</tr>
<tr>
<td>Pocos matorrales y árboles, en verano</td>
<td>0.040</td>
<td>0.060</td>
<td>0.080</td>
</tr>
<tr>
<td>Mediana a gran cantidad de matorrales, en invierno</td>
<td>0.045</td>
<td>0.070</td>
<td>0.110</td>
</tr>
<tr>
<td>Mediana a gran cantidad de matorrales, en verano</td>
<td>0.070</td>
<td>0.100</td>
<td>0.160</td>
</tr>
<tr>
<td>d) Arbolados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bancos disorientados, en verano, rectos</td>
<td>0.110</td>
<td>0.150</td>
<td>0.220</td>
</tr>
<tr>
<td>Tierra desnuda con postes o troncos de árboles, sin brotes</td>
<td>0.030</td>
<td>0.040</td>
<td>0.050</td>
</tr>
<tr>
<td>Idem, con gran cantidad de brotes o ramas</td>
<td>0.050</td>
<td>0.060</td>
<td>0.080</td>
</tr>
<tr>
<td>Troncos o postes, pocas árboles caídos, pequeños cultivos, nivel de crecida bajo las ramas</td>
<td>0.080</td>
<td>0.100</td>
<td>0.120</td>
</tr>
<tr>
<td>Idem, pero el nivel de crecida alcanza los ramos</td>
<td>0.100</td>
<td>0.120</td>
<td>0.150</td>
</tr>
</tbody>
</table>

Tabla 3-1: Valores del coeficiente de rugosidad o N de Manning, cauces naturales.

3.3 Caudales de estudio

Para la condición de crecida sin sedimentos se analizaron los caudales de diseño determinados en el proyecto de las obras fluviales construidas (Tabla 3-2).

De la información recopilada para la crecida del 2006 se estimó que se alcanzó en promedio 1 m de embarrado producto del arrastre de sedimento, dicho embarrado se podría entender como una pérdida de la sección útil del cauce, en este contexto para representar dicho efecto se mayoró el caudal el caudal de agua correspondiente al periodo de retorno T=100 años en un 19%.

Este valor corresponde al porcentaje de la diferencia de caudales entre los periodos de retorno de diseño de las obras de encauzamiento sin la obra del sedimentador versus el funcionamiento de las obras de encauzamiento con el sedimentador, estos periodos de retorno corresponden a 25 y 100 años respectivamente.

Tabla 3-2: Caudales en estudio [m3/s].

<table>
<thead>
<tr>
<th>Periodo</th>
<th>Caudal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Los caudales de la tabla Tabla 3-2 se desglosan según lo indicado en el modelo HecRas para la situación sin proyecto (PRISMA Ingeniería, 2007), priorizando los cauces del río Andalién, esteros Palomares y Nonguén.

Tabla 3-3: Caudales de descarga para los distintos periodos de retorno en estudio (m³/s)

<table>
<thead>
<tr>
<th></th>
<th>T2</th>
<th>T5</th>
<th>T10</th>
<th>T25</th>
<th>T50</th>
<th>T100</th>
<th>T100m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Río Andalién</td>
<td>167</td>
<td>249</td>
<td>305</td>
<td>477</td>
<td>532</td>
<td>584</td>
<td>695</td>
</tr>
<tr>
<td>Estero Palomares</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>14</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Estero Nonguén</td>
<td>13</td>
<td>18</td>
<td>20</td>
<td>23</td>
<td>41</td>
<td>45</td>
<td>54</td>
</tr>
<tr>
<td>Total</td>
<td>185</td>
<td>274</td>
<td>335</td>
<td>520</td>
<td>587</td>
<td>644</td>
<td>766</td>
</tr>
</tbody>
</table>

3.4 Condición de borde aguas abajo

En el punto 2.2.2 del Informe Final “Diseño de Obras Fluviales Río Andalién, Estero Nonguén y Palomares, VIII Región Del BioBio” se indica que “Se impuso como condición de borde una altura de eje hidráulico conocida en el perfil de más de aguas abajo (se tomó el valor mayor entre el correspondiente a la más alta marea y aquel equivalente a suponer crisis en la barra).” Por lo que para este estudio se utilizó al cota impuesta en el modelo unidimensional Hec-Ras, desarrollado y utilizado por PRISMA Ingeniería, 2007, para el diseño de las obras. La condición de aguas abajo del modelo unidimensional, corresponde a la cota de marea alta en la desembocadura 1,9 m (Tabla 3-4).

Tabla 3-4: Altura conocida aguas abajo del modelo numérico.
3.5 Área de modelación.

La zona de estudio se encuentra desde el aporte del estero palomares (aguas arriba), hasta 450 m aguas arriba del puente el puente las ballenas, lugar donde se emplazan las 3 etapas del proyecto encauzamiento del río Andalien. Para evitar influencias de las condiciones de borde del modelo en los resultados, se extiende el área de modelación 460 m aguas arriba del estero Palomares hasta la desembocadura del río, quedando como área modelada lo representado por la fotografía.

![Diagrama de área de modelación](image)

Figura 3-1: Área de modelación

3.6 Casos de modelación

En el presente estudio se realizó la modelación numérica de 14 casos, estos corresponden a 2 estados del río Andalién, en el primer caso (modelo 1) se considera la construcción de la Etapa I y II del proyecto de encauzamiento del río y el segundo (modelo 2) caso considerando el desarrollo completo de las 3 etapas que conforman dicho proyecto. Para los 2 casos se consideraron 7 periodos de retorno (2, 5, 10, 25, 50, 100, y 100m años).

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Situación Actual (Etapa I y II construidas)</td>
</tr>
<tr>
<td>2</td>
<td>Situación Futura (Etapa I, II y III construidas)</td>
</tr>
</tbody>
</table>
4 MODELACION NUMERICA

4.1 Características de la Grilla utilizada

Se definió un modelo matemático de aproximadamente 9 km de extensión desde las coordenadas E 677013.54, N5923690.90 y E674770.59, N5929848.04.

4.1.1 Sectorizaciones

Se sectorizaron las zonas con alta densidad de construcciones, cauce del río y zonas de inundación, en ellas se generaron elementos de 5 a 15 m de lado, adicionalmente se crearon líneas con tamaño de 5 m en los puntos más altos de las obras o donde se producen cambios de pendiente transversal, para reproducir de buena forma la altura de coronamiento y geometría de ellas.

Los tamaños seleccionados son estimador en base a iteraciones en la generación de la malla y modelaciones, para obtener una buena representación de las estructuras en el caso de las líneas y para optimizar el tiempo de cálculo y tamaño de las salidas del área de inundación. La distribución de tamaños de malla queda según muestra la Figura 4-1.

Figura 4-1: Sectorizaciones de tamaños de malla
4.1.2 Parámetros de la malla

Para la representación del modelo de terreno se utilizó una malla no estructurada de 344878 elementos, con tamaños de catetos desde 5 m como mínimo, y 20 m como máximo (Figura 4-2 b) y c), lo que genera una buena calidad de forma (Figura 4-2 d).

En relación a los ángulos internos, para evitar inestabilidades en el modelo numérico, se logró que solo 25 elementos tuviesen ángulos interiores menores a 30° según se muestra en la Figura 4-2 a).
4.2 Condiciones de borde

Las condiciones de borde en el modelo numérico utilizado corresponden a las condiciones de borde lateral (entrada y salida de flujo) y la condición de borde inferior (topografía), a continuación se describe la fuente, generación y utilización en los modelos.

4.2.1 Topografía

La base topográfica utilizada para la generación del modelo de terreno, fue trabajada utilizando los softwares Global Mapper, Autocad y ArcGis, de ellos se extrajo los límites de modelación, ubicación de los distintos puentes ubicados en la caja del río y la nube de puntos para poder adaptar la información disponible según los requerimientos del software Iber.

Debido a que se dispone de distintas fuentes topográficas, se realizó un análisis de la información según queda expuesto en el Anexo I – Análisis de topografía, logrando relacionar las distintas fuentes.

4.2.1.1 Digitalización de información

Se digitalizó y posicionó la información de perfiles transversales de las 3 etapas del proyecto encauzamiento del río Andalién, estos, para obtener 2 modelos digitales de terreno que representen la situación actual y futura del cauce.

Esta digitalización se dividió en 2 partes, las que se describen a continuación:

1. Situación actual: esta corresponde a un 75 % del proyecto completo, que es lo que se ha construido hasta el momento (etapa I y II).

2. Situación Proyecto finalizado: esta corresponde al proyecto completado en un 100%
4.2.2 Condiciones de Contorno

Las condiciones de borde laterales que conforman el modelo se clasifican en tres:

- Condición de entrada de flujo [Amarillo]
- Condición de salida del flujo [Verde]
- Condición de borde cerrado [Azul]

Figura 4-3: Condiciones de borde laterales.

En la Figura se distinguen los bordes considerados para el modelo, destacando con color amarillo el borde correspondiente a la condición de entrada de flujo, en este caso se utiliza una descarga de caudal constante considerando 7 condiciones de flujo distintas (permanentes), estas corresponden a los periodos de retorno descritos en la Tabla 3-3

En color verde se utiliza una condición de altura, pues el borde del modelo queda influenciado por la marea. Para el presente estudio se consideró la altura de marea utilizada en el estudio hidráulico “DISEÑO DE OBRAS FLUVIALES RÍO ANDALIEN, ESTEROS NONGUÉN Y PALOMARES, VIII REGIÓN DEL BIO BIO”, de cota 1,9 m.

En los bordes, destacados con color azul, se impuso una condición de tipo cerrada que no permite el paso de flujo en esa dirección.

4.2.3 Rugosidad

La rugosidad de fondo en el modelo está incorporada mediante la ley cuadrática de fricción, donde este coeficiente (drag coefficient) se determina (internamente en IBER) mediante la formulación de Manning.

En base fotografías del 29/6/2015 del google earth se verificó el estado del cauce en relación a la existencia de vegetación, considerando que en general la sección del río
es mayor a $30m$ y que mantiene una sección regular se utiliza un manning uniforme de 0.04, dentro del rango máximo y mínimo de la Tabla 3-1

4.3 Puentes

Se realizó un análisis de sensibilidad en relación a la implementación de los pilares de los puentes dentro del modelo, este queda expuesto en el Anexo II del presente documento. En él se determinó que la inclusión de los pilares y puentes con la herramienta nativa de Iber reduce el tiempo de cómputo considerablemente.

En la Tabla 4-1 se exponen los datos de entrada, requeridos por IBER, para los distintos puentes a lo largo de la zona de estudio, estos valores fueron obtenidos del modelo HecRas existente y parámetros por defecto del modelo Iber.

<table>
<thead>
<tr>
<th>Puente</th>
<th>% apertura</th>
<th>Cb presión anegado*</th>
<th>Cb Presión Libre*</th>
<th>Cb Tablero*</th>
<th>Cota Tablero**</th>
<th>Cota Inferior** Tablero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruta Concepción - Penco</td>
<td>93.8</td>
<td>0.8</td>
<td>0.6</td>
<td>1.7</td>
<td>11.2</td>
<td>9.2</td>
</tr>
<tr>
<td>Puente Andalién</td>
<td>91</td>
<td>0.8</td>
<td>0.6</td>
<td>1.7</td>
<td>8.49</td>
<td>6.99</td>
</tr>
<tr>
<td>Puente Ferroviario</td>
<td>91.8</td>
<td>0.8</td>
<td>0.6</td>
<td>1.7</td>
<td>8</td>
<td>7.5</td>
</tr>
<tr>
<td>Puente las Ballenas</td>
<td>97.5</td>
<td>0.8</td>
<td>0.6</td>
<td>1.7</td>
<td>6</td>
<td>5.4</td>
</tr>
</tbody>
</table>

*Valores por defecto. ** Valores de HecRas proyecto prisma 2007.

4.4 Parámetros de iniciación del modelo

La discretización temporal de la solución numérica para asegurar estabilidad se establece automáticamente por IBER al restringir el modelo a un valor máximo del número de Courant–Friedrich–Levy (CFL) a 0.45. Se ejecutó el modelo durante 37.5 horas de modelación, tiempo suficiente para que el modelo llegue a una condición de flujo permanente.

A continuación se exponen los parámetros más importantes en la configuración del modelo numérico.

<table>
<thead>
<tr>
<th>Tabla 4-2: Configuración del modelo numérico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo del Time Step</td>
</tr>
<tr>
<td>Tiempo de modelo</td>
</tr>
<tr>
<td>Integración de tiempo y discretización del espacio</td>
</tr>
<tr>
<td>Máximo paso del tiempo</td>
</tr>
<tr>
<td>CFL</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Límite Seco Mojado</td>
</tr>
<tr>
<td>Modelo de Turbulencia</td>
</tr>
</tbody>
</table>
RESULTADOS

Para dar a conocer los resultados del presente estudio se generó una serie de planos en planta y de perfiles transversales según queda detallado en el listado de planos en Anexo III – Planos, a continuaciones se describe el contenido de los planos:

- Planos de planta general de los resultados de la modelación identificando las áreas afectas a inundación en escala 1:2.000
- Planos de planta a escala 1:10.000 y escala 1:5.000 para el tramo Cosmito – pte. Alonso de Rivera, con el resultado de las modelaciones.
- Planos de planta en escala 1:2.000 de los resultados de la modelación identificando las velocidades y profundidad es de inundación de los distintos casos en estudio.
- Planos de planta con mayor detalle escala 1:2.000, junto con el perfil longitudinal escala a 1:2.000 y 1:200, y perfiles transversales a escala 1:1.000.

Por la extensión del modelo se dividió en 7 sectores, esquematizados de la siguiente forma (Figura 5-1 a) además se distinguen las dos situaciones modeladas que corresponden a lo descrito en el punto 3.6 del presente documento (Figura 5-1 b).

A continuación se indica el kilometraje y una descripción de las 7 zonas.

<table>
<thead>
<tr>
<th>Zona</th>
<th>KM</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3+300 a 4+380</td>
<td>Zona Etapa II, frente a sector el Rosal</td>
</tr>
<tr>
<td>2</td>
<td>4+400 a 5+760</td>
<td>Zona Etapa II, frente a sector el Rosal, Peaje ramal Alessandri</td>
</tr>
<tr>
<td>3</td>
<td>5+780 a 8+100</td>
<td>Zona Cosmito.</td>
</tr>
<tr>
<td>4</td>
<td>8+120 a 9+620</td>
<td>Zona desde puente Ferroviario, frente a Villa Universitaria.</td>
</tr>
<tr>
<td>5</td>
<td>9+640 a 11+072</td>
<td>Zona desde puente ruta Concepción Penco a puente ferroviario</td>
</tr>
<tr>
<td>6</td>
<td>11+082 a 12+162</td>
<td>Sector Collao, desde descarga de estero Nonguén a puente Ruta Concepción– Penco.</td>
</tr>
<tr>
<td>7</td>
<td>13+182 a 13+442</td>
<td>Sector Valle Noble, desde descarga del estero palomares a Estero Nonguén.</td>
</tr>
</tbody>
</table>
5.1 Análisis de funcionamiento de puentes

Las alturas de agua en el eje del cauce del modelo 1 (Figura 5–2) muestran que el puente ruta Penco–Concepción es alcanzado solo por el caudal de 100 años mayorado (sin la instalación del sedimentador) alcanzando una cota 0.15 m por sobre la cota inferior del puente.

El puente Andalién, es alcanzado por los caudales asociados a los periodos de retorno de 5 años en adelante, lo que concuerda con los resultados del modelo HecRas de EIC, 2007.

El puente ferroviario es alcanzado por caudales asociados a periodos de retorno de 5 años y superiores a este.
Las alturas de agua en el eje del cauce del modelo 2 (Figura 5–3), muestran que el puente ruta Penco–Concepción y el puente ferroviario no sería alcanzado por ninguno de los periodos de retorno estudiados, quedando 0.55 m entre la cota inferior del puente y la cota de superficie del agua.

El puente Andalién, es alcanzado por los caudales asociados a los periodos de retorno de 25 años en adelante, que a diferencia del modelo 1 era alcanzado por caudales de período de retorno de 5 años en adelante.

![Figura 5–3: Cota superficie de agua en zona con puentes modelo 2 (situación Futura).](image)

5.2 Análisis sobre pasos de riberas

Los resultados de los distintos escenarios para la situación futura, muestran que en la zona I, para periodos de retorno de 25 y 50 años, entre el km 3+835 al 3+982 y entre el km 4+037 al 4+403, las alturas de escurrimiento no sobrepasarían la cota de coronamiento pero no se mantendría la revancha mayor a 1 m, para periodos de retorno de 100 años habría sobrepaso de la cota de coronamiento en el kilometraje mencionado.

En la zona II desde el km 4+400 y 4+591 para periodos de retorno de 100 años la cota de coronamiento es sobre pasada. Aguas abajo en el sector del km 5+490 al 5+521 existirían sobre pasos para periodos de retorno asociados a 10 años.

En la zona III desde el km 6+480 al 6+720 y 6+940 existe sobre paso de la ribera derecha para periodo de retorno desde 2 años, desde el periodo de retorno de 10 años aparecen desbordes desde el km 7+400 al 7+520 y desde el km 7+660 prolongándose hasta la zona IV aprox. Al km 8+880. Desde periodos de retorno de 25 años en adelante a los desbordes ya señalados, se suman desbordes desde el km 6+480 al 7+060 por la ribera derecha.
En para periodos de retorno de 5 años de identifican zonas de sobrepaso, en la ribera derecha, en el km 8+680 al 8+880, ya desde el periodo de 10 años se identifica un sobrepaso general en la ribera derecha en el km 7+660 al km 9+420.

En la Zona V desde el periodo de retorno de 5 años de identifican sobrepasos desde el km 9+580 al 10+800 en la ribera derecha. En la ribera izquierda se identifican sobrepasos en los km 9+760 al km 9+860 y puntualmente en el km ~10+300.

En la zona VI desde el periodo de retorno de 5 años se identifican sobrepasos en el sector de los kms 11+680 para la ribera derecha y 12+100 para la ribera izquierda. Para periodo de retornos desde 25 años se añaden puntualmente en el km 11+200 de la ribera izquierda.

En la zona VII solo se identifican 2 sectores en la ribera derecha con sobrepasos, estos se producen desde el pedidos de retorno de 5 año entre los km 12+200 al 12+300 y entre los kms 12+660 al12+760.
5.3 Áreas de desborde periodo de retorno 2 años

Existe una zona afectada se encuentra por los costados de la canalización, esta se provoca por el paso del agua entre el fin de las obras y el puente las ballenas, en ese lugar no existen obras de encauzamiento, este efecto se reproduce en todos los periodos de retornos estudiados (Figura 5-4 zona 1).

La cota de coronamiento de la obra de encauzamiento en las zonas 1, 2 y 3 no son sobrepasadas quedando valores de revanchas (cota ribera versus cota superficie de agua en la ribera).

En el caso del modelo 1 solo existe un punto donde el agua afecta la ribera oeste del río (Figura 5-5 zona 3), producto de una depresión puntual en la cota de la ribera en dicho sector, este desborde es solucionado con la ejecución de la etapa III del proyecto encauzamiento, donde el caudal asociado al periodo de retorno de 2 años queda completamente contenido dentro del cauce.

Figura 5–4: Áreas de inundación de las zonas 1 a la 3.
Figura 5–5: Áreas de inundación de las zonas 4 a la 7.

En el modelo 1, las mayores velocidades se provocan en una contracción del flujo como se muestra en la Figura 5–6, alcanzando 3,2 m/s y 2.5 m/s en la parte superior (Cosmito) e inferior (Estero Palomares) respectivamente.
En el modelo 2, al modificar la geometría del cauce se reducen velocidades en el sector superior (Figura 5-6 a), pero se mantiene la zona de altas velocidades en el sector de la descarga del estero palomares (Figura 5-6 b), este efecto se replica en los demás periodos de retorno estudiados.

Cabe destacar que no se tiene detalle de la transición entre la etapa I y el terreno natural en la zona del inicio de las obras de encauzamiento (Figura 5-6 b) por lo que en la modelación no se consideró hacer una transición para suavizar la unión de las topografías.

![Figura 5-6: Velocidades a lo largo de los modelos para T=2 años.](image)
Figura 5–7: Profundidades de escurrimiento a lo largo de los modelos para T=2 años.
Áreas de desborde período de retorno 5 años

Para este período de retorno en adelante existen desbordes hacia el lado hacia el lado oeste en el modelo 2 (Figura 5–5 zona 3) entre el sector de Cosmito y aguas abajo del puente ruta Concepción–Penco. Estos desbordes o sobrepaso de la ribera se provocan porque en el encauzamiento del modelo 2, por ejemplo en el perfil 8+100, existe una diferencia de 4.1 m en la cota de coronamiento de la ribera oeste como muestra la Figura 5–8.

Figura 5–8: Esquema perfil 8+100

Figura 5–9: Áreas de inundación de las zonas 1 a la 3.
Figura 5-10: Áreas de inundación de las zonas 4 a la 7.
En el modelo 1, las mayores velocidades se provocan en una contracción del flujo antes de la curva en el sector de cosmitos, como se muestra en la Figura 5–6, alcanzando los 3.4 m/s como máximo.

En el modelo 2, al modificar la forma del cauce se elimina las altas velocidades en el sector superior, pero se mantiene la zona de altas velocidades en la zona de la descarga del estero palomares.

![Diagrama de Velocidades](image)

- a) Velocidad modelo 1
- b) Velocidad modelo 2

Figura 5–11: Velocidades a lo largo de los modelos para t=5 años.
Figura 5-12: Profundidades de escurrimiento a lo largo de los modelos para t=5 años.

5.5 Áreas de desborde periodo de retorno 10 años
Figura 5-13: Áreas de inundación de las zonas 1 a la 3.
Figura 5-14: Áreas de inundación de las zonas 4 a la 7.
Figura 5-15: Velocidades a lo largo de los modelos para t=10 años.

a) **Velocidad modelo 1**

b) **Velocidad modelo 2**
Figura 5-16: Profundidades de escurrimiento a lo largo de los modelos para t=10 años.

5.6 Áreas de desborde periodo de retorno 25 años
Figura 5-17: Áreas de inundación de las zonas 1 a la 3.
Figura 5-18: Áreas de inundación de las zonas 4 a la 7.
Figura 5-19: Velocidades a lo largo de los modelos para t=25 años.
Figura 5-20: Profundidades de escurrimiento a lo largo de los modelos para t=25 años.
5.7 Áreas de desborde periodo de retorno 50 años

Figura 5-21: Áreas de inundación de las zonas 1 a la 3.
Figura 5-22: Áreas de inundación de las zonas 4 a la 7.
Figura 5-23: Velocidades a lo largo de los modelos para t=50 años.
Figura 5-24: Profundidades de escurrimiento a lo largo de los modelos para $t=50$ años.
5.8 Áreas de desborde periodo de retorno 100 años

Figura 5-25: Áreas de inundación de las zonas 1 a la 3.
Figura 5-26: Áreas de inundación de las zonas 4 a la 7.
Figura 5-27: Velocidades a lo largo de los modelos para t=100 años.
Figura 5-28: Profundidades de escurrimiento a lo largo de los modelos para $t=100$ años.
5.9 Áreas de desborde periodo de retorno 100 años mayorado

Figura 5–29: Áreas de inundación de las zonas 1 a la 3.
Figura 5–30: Áreas de inundación de las zonas 4 a la 7.
c) Velocidad modelo 1

d) Velocidad modelo 2

Figura 5-31: Velocidades a lo largo de los modelos para t=100 años.
c) Profundidad modelo 1
d) Profundidad modelo 2

Figura 5-32: Profundidades de escorrentío a lo largo de los modelos para t=100 años.
CONCLUSIONES Y RECOMENDACIONES

Se ajustó y acondicionó la información para construir los modelos matemáticos, para evaluar los efectos hidrodinámicos del río Andalién, considerando los caudales de diseño determinados en el proyecto de las obras fluviales, por efecto de la situación actual (75% del proyecto “Diseño de Obras Fluviales Río Andalién, Esteros Nonguén y Palomares, VIII Región Del Bio Bio”) y la situación con las obras 100 % terminadas.

En el presente estudio logró realizar las modelaciones de las alternativas bajo condiciones hidráulicas asociadas a periodos de retorno de 2, 5, 10, 25, 50, 100 años y un caudal mayorado, este último para representar los efectos de la perdida de sección del río por efectos de la deposición de sedimentos arrastrado desde aguas arriba de la zona de estudio, en total se realizaron 14 modelo numéricos.

Se incorporar el efecto sedimentológico mayorando el caudal de 100 años en un 19 %, este este caudal representaría por medio del aumento del caudal, la perdida de sección útil del cauce una vez que el sedimento queda depositado en el fondo. Este efecto debería ser evitado con la construcción del sedimentador aguas arriba de la zona de estudio.

El río Andalién se comporta en régimen subcrítico para todos los periodos de retorno estudiados, presentando números de Froude menores a uno en toda la zona de modelación.

Lo anterior indica que las alturas de escorrentío están controladas aguas abajo, después de las obras de canalización. Aguas abajo del km 3+300 existen 2 contracciones del flujo que pueden afectar las alturas de escorrentío, estas son el puente las ballenas y la desembocadura del río Andalién al mar. En este último, se podría producir un fenómeno de socavación de la barra en la desembocadura, aumentando la sección útil pudiendo así disminuir eventualmente el eje hidráulico aguas arriba.

De los resultados, se observa que la cota de escorrentío en el sector del puente las ballenas es mayor a 1.9 m (altura de escorrentío impuesta como condición de borde del modelo) lo que reafirma lo descrito en el párrafo anterior.

La construcción del sedimentador y la canalización del río Andalién mejorarán la condición actual y permiten el libre escorrentío en la zona del Puente ruta Concepción–Penco y puente ferroviario para todos periodos de retorno estudiados, solo siendo alcanzado el puente Andalién por periodos de retorno mayores a 10 años.

Si bien existe un ensanchamiento en la caja del río entre los km 7+560 y 9+500, la reducción de altura en la cota de coronamiento de la ribera oeste, provoca el sobrepeo del flujo para periodos de retorno superiores a 2 años, en distintas magnitudes.
6.1 Recomendaciones

Generales

Uno de los que toma mayor relevancia dentro de un estudio hidráulico es la topografía y batimetría del sector en estudio, el trabajo con distintas fuentes de información debe ser trabajado de forma minuciosa para así lograr un buen modelo de terreno.

En el caso particular del presente estudio se cuentan con topografías de distinto orden, topografía tradicional, RTK y un levantamiento Lidar, adicionalmente alguna de estas se realizaron en fechas muy cercanas al 27 F, este último punto toma importancia considerando que existen evidencia de que en el terremoto existió un levantamiento diferencial en la zona de estudio (Vargas, 2011 y Melnick, 2012).

En este contexto se recomienda para trabajos futuros, realizar levantamientos específicos con fines hidráulicos y con una extensión suficiente para representar el área de inundación por completo.

Particulares

Se recomienda estudiar el efecto de subir la cota de coronamiento de la ribera oeste en el tramo comprendido entre el sector desde el puente ruta Concepción Penco y el sector de Cosmitos.

Si el efecto que provoca el retorno del flujo por el borde externo de la obra de encauzamiento específicamente en el km 3+300 y el puente las ballenas no fuese deseado, se proponen estudiar una prolongación de la etapa II hasta el puente las Ballenas para evitar dicho retorno por el costado exterior del encauzamiento considerando la parte hidráulica y medio ambiental que esto podría significar.

Analizar una obra que ensanche o mantención del ancho de la desembocadura del río en el mar, podría disminuir las cotas de escorrimento aguas arriba.

Para obtener una mirada integral del sistema del río Andalién con la implementación de las alternativas descritas anteriormente, estas deben ser estudiadas en conjunto y en ningún caso por separado.

Incorporar en futuros estudios el efecto del arrastre de los sedimentos, pueden entregar una mirada de las zonas de deposición y erosión del cauce producto de los distintos periodos de retorno, este tipo de estudio requiere la obtención de parámetros específicos como granulometrías de las zonas donde se inicia el trasporte de sedimento y no necesariamente el sedimento que se encuentra depositado en el lecho del río.
Bibliografía

Estudio Diseño de Obras Fluviales Río Andalién, Esteros Nonguén y Palomares, VIII Región del Bío Bío” EIC 2008

Estudio de Factibilidad y Diseño Definitivo de las obras de regulación y retención de sedimentos en río Andalién, Región del Biobío”, año 2011 y Planos.

Levantamiento topográfico Río Andalién sector Cosmito–Puente Alonso de Rivera, Provincia de Concepción Región del Bio Bío” 2014

Diseño de obras fluviales río Andalién, esteros Nonguén y palomares, VIII región del BioBio

Melnick, D., Cisternas, M., Moreno, M., Norambuena, R.2012. Estimating coseismic coastal uplift with an intertidal mussel: calibration for the2010 Maule Chile earthquake (Mw= 8.8)- ELSEVIER

Vargas, G., Farias, M., Carretier, S., Tassara, A., Baize, S., Melnick, D. 2011Coastal uplift and tsunami effects associated to the 2010 Mw= 8.8 Maule earthquake in Central Chile - Andean Geology
ANEXOS
ANEXOI – ANÁLISIS DE TOPOGRAFÍA

I - Verificación de perfiles

Se verificaron los perfiles aguas arriba de los puertos del modelo HecRas con la información del Lidar, de este análisis se verificó que la información Lidar en promedio posee $1/2$ de diferencia (más bajo) con la información del proyecto Hec Ras, por lo que para unificar estas informaciones se adicionó 1 metro a dicha información.
Figura 7-3: Puente Ferrocarril

Con este cambio se logra una continuidad de las dos fuentes topográficas, en la Figura 7-4 a) y b) se muestra la transición aguas arriba y aguas abajo respectivamente.

a) Aguas arriba b) Aguas abajo

Figura 7-4: Combinación de fuentes topográficas.

II – Levantamiento líder

Como se menciona en el punto 3.4, la condición de borde aguas abajo del modelo numérico es 1.9 m, por lo que en un primer análisis se realizó una demarcación de todos los sectores bajo esa cota, como se muestra en la Figura 7-5. Se puede notar la influencia de la condición de marea hacia aguas arriba (en rojo) sin considerar el efecto de la descarga del río Andalien.
Figura 7-5: Sectores bajo la cota 1.9 m (rojo)
FUENTE: BingMaps, Lidar
ANEXO II - ANÁLISIS DE SENSIBILIDAD ESTRUCTURAS

Con el fin de identificar los tiempos de cálculo de los modelos, se realizó un análisis de sensibilidad de los tiempos de cómputo, este análisis corresponde a la inclusión de las estructuras existentes dentro del cauce de dos maneras.

En una primera instancia, para representar el efecto de algunas estructuras (pilares) presentes dentro del cauce se crean áreas donde no se genera el mallado, en la ubicación de ellas, obligando al flujo a rodear la estructura, esta situación se repitió en los 3 sectores con puentes a lo largo de la zona de estudio, las 3 zonas se muestran en la Figura 7–6 desde aguas arriba hacia aguas abajo.

a) Puente ruta a Penco

b) Puente Andalién
c) Puente Ferrocarril

Figura 7–6: Sector Puentes

En una segunda instancia se utilizó la herramienta de Iber en la que se identifica la posición, coeficientes C_b de flujo presión anegado, libre (Tabla 4–1) y el porcentaje de apertura de la sección (Figura 7–7)

Figura 7–7: Esquema puente Andalién, en verde la sección abierta.

Del análisis anterior, se observó que con la segunda metodología se reduce el tiempo de modelación en 10 veces. Esta reducción de tiempo se logra porque en las zonas donde se incorporan las estructuras el elemento tiene un tamaño de $0.2\,m$ por lo que el programa para respetar el número CFL de 0.45 reduce el tiempo de computo o “time step”.
ANEXO III PLANOS
<table>
<thead>
<tr>
<th>Número Asignado INH</th>
<th>Contenido de la Lámina</th>
<th>Número Correlativo</th>
<th>Codificación Externa</th>
<th>Ingreso (DOH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 4314</td>
<td>Perfil Longitudinal</td>
<td>1</td>
<td>7:125–53–01 1/25</td>
<td>A-6450-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Perfil Longitudinal</td>
<td>2</td>
<td>7:125–53–02 2/25</td>
<td>A-6451-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Perfil Longitudinal</td>
<td>3</td>
<td>7:125–53–03 3/25</td>
<td>A-6452-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Perfil Longitudinal</td>
<td>5</td>
<td>7:125–53–05 5/25</td>
<td>A-6454-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Transversales</td>
<td>7</td>
<td>7:125–53–07 7/25</td>
<td>A-6456-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Transversales</td>
<td>8</td>
<td>7:125–53–08 8/25</td>
<td>A-6457-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Transversales</td>
<td>10</td>
<td>7:125–53–10 10/25</td>
<td>A-6459-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Transversales</td>
<td>12</td>
<td>7:125–53–12 12/25</td>
<td>A-6461-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Transversales</td>
<td>13</td>
<td>7:125–53–13 13/25</td>
<td>A-6462-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Transversales</td>
<td>14</td>
<td>7:125–53–14 14/25</td>
<td>A-6463-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Transversales</td>
<td>16</td>
<td>7:125–53–16 16/25</td>
<td>A-6465-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Transversales</td>
<td>17</td>
<td>7:125–53–17 17/25</td>
<td>A-6466-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Transversales</td>
<td>18</td>
<td>7:125–53–18 18/25</td>
<td>A-6467-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Transversales</td>
<td>19</td>
<td>7:125–53–19 19/25</td>
<td>A-6468-VIII</td>
</tr>
<tr>
<td>T2 4314</td>
<td>Transversales</td>
<td>21</td>
<td>7:125–53–21 21/25</td>
<td>A-6470-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Perfil Longitudinal</td>
<td>1</td>
<td>7:125–53–26 1/25</td>
<td>A-6475-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Perfil Longitudinal</td>
<td>5</td>
<td>7:125–53–30 5/25</td>
<td>A-6479-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Transversales</td>
<td>7</td>
<td>7:125–53–32 7/25</td>
<td>A-6481-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Transversales</td>
<td>8</td>
<td>7:125–53–33 8/25</td>
<td>A-6482-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Transversales</td>
<td>13</td>
<td>7:125–53–38 13/25</td>
<td>A-6487-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Transversales</td>
<td>15</td>
<td>7:125–53–40 15/25</td>
<td>A-6489-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Transversales</td>
<td>16</td>
<td>7:125–53–41 16/25</td>
<td>A-6490-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Transversales</td>
<td>17</td>
<td>7:125–53–42 17/25</td>
<td>A-6491-VIII</td>
</tr>
<tr>
<td>Código</td>
<td>Tipo</td>
<td>Descripción</td>
<td>Código</td>
<td>Caudal</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Transversales</td>
<td>18</td>
<td>7:125–53–43 18/25</td>
<td>A-6492-VIII</td>
</tr>
<tr>
<td>T5 4316</td>
<td>Transversales</td>
<td>19</td>
<td>7:125–53–44 19/25</td>
<td>A-6493-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Transversales</td>
<td>20</td>
<td>7:125–53–45 20/25</td>
<td>A-6494-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Transversales</td>
<td>21</td>
<td>7:125–53–46 21/25</td>
<td>A-6495-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Transversales</td>
<td>22</td>
<td>7:125–53–47 22/25</td>
<td>A-6496-VIII</td>
</tr>
<tr>
<td>T5 4315</td>
<td>Transversales</td>
<td>24</td>
<td>7:125–53–49 24/25</td>
<td>A-6498-VIII</td>
</tr>
<tr>
<td>T10 4316</td>
<td>Perfil Longitudinal</td>
<td>1</td>
<td>7:125–53–51 1/25</td>
<td>A-6500-VIII</td>
</tr>
<tr>
<td>T10 4316</td>
<td>Transversales</td>
<td>7</td>
<td>7:125–53–57 7/25</td>
<td>A-6506-VIII</td>
</tr>
<tr>
<td>T10 4316</td>
<td>Transversales</td>
<td>8</td>
<td>7:125–53–58 8/25</td>
<td>A-6507-VIII</td>
</tr>
<tr>
<td>T10 4316</td>
<td>Transversales</td>
<td>10</td>
<td>7:125–53–60 10/25</td>
<td>A-6509-VIII</td>
</tr>
<tr>
<td>T10 4316</td>
<td>Transversales</td>
<td>14</td>
<td>7:125–53–64 14/25</td>
<td>A-6513-VIII</td>
</tr>
<tr>
<td>T10 4316</td>
<td>Transversales</td>
<td>19</td>
<td>7:125–53–69 19/25</td>
<td>A-6518-VIII</td>
</tr>
<tr>
<td>T10 4316</td>
<td>Transversales</td>
<td>20</td>
<td>7:125–53–70 20/25</td>
<td>A-6519-VIII</td>
</tr>
<tr>
<td>T25 4317</td>
<td>Transversales</td>
<td>14</td>
<td>7:125–53–89 14/25</td>
<td>A-6538-VIII</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>T25</td>
<td>4317</td>
<td>Transversales</td>
<td>18</td>
<td>7:125-53—93 18/25 A-6542-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Perfil Longitudinal</td>
<td>1</td>
<td>7:125-53—101 1/25 A-6550-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Perfil Longitudinal</td>
<td>2</td>
<td>7:125-53—102 2/25 A-6551-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Perfil Longitudinal</td>
<td>3</td>
<td>7:125-53—103 3/25 A-6552-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Perfil Longitudinal</td>
<td>5</td>
<td>7:125-53—105 5/25 A-6554-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>7</td>
<td>7:125-53—107 7/25 A-6556-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>8</td>
<td>7:125-53—108 8/25 A-6557-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>10</td>
<td>7:125-53—110 10/25 A-6559-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>13</td>
<td>7:125-53—113 13/25 A-6562-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>14</td>
<td>7:125-53—114 14/25 A-6563-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>15</td>
<td>7:125-53—115 15/25 A-6564-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>17</td>
<td>7:125-53—117 17/25 A-6566-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>18</td>
<td>7:125-53—118 18/25 A-6567-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>19</td>
<td>7:125-53—119 19/25 A-6568-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>20</td>
<td>7:125-53—120 20/25 A-6569-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>21</td>
<td>7:125-53—121 21/25 A-6570-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>22</td>
<td>7:125-53—122 22/25 A-6571-VIII</td>
</tr>
<tr>
<td>T50</td>
<td>4318</td>
<td>Transversales</td>
<td>23</td>
<td>7:125-53—123 23/25 A-6572-VIII</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Perfil Longitudinal</td>
<td>1</td>
<td>7:125-53—126 1/25 A-6575-VIII</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Perfil Longitudinal</td>
<td>2</td>
<td>7:125-53—127 2/25 A-6576-VIII</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Perfil Longitudinal</td>
<td>3</td>
<td>7:125-53—128 3/25 A-6577-VIII</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Perfil Longitudinal</td>
<td>4</td>
<td>7:125-53—129 4/25 A-6578-VIII</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Perfil Longitudinal</td>
<td>5</td>
<td>7:125-53—130 5/25 A-6579-VIII</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>6</td>
<td>7:125-53—131 6/25 A-6580-VIII</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>7</td>
<td>7:125-53—132 7/25 A-6581-VIII</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>8</td>
<td>7:125-53—133 8/25 A-6582-VIII</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>9</td>
<td>7:125-53—134 9/25 A-6583-VIII</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>10</td>
<td>7:125-53—135 10/25 A-6584-VIII</td>
</tr>
<tr>
<td>Código</td>
<td>Código VG</td>
<td>Tipo de línea</td>
<td>Número de línea</td>
<td>Nivel Horario 1</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>12</td>
<td>7:125–53—137 12/25</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>13</td>
<td>7:125–53—138 13/25</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>14</td>
<td>7:125–53—139 14/25</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>15</td>
<td>7:125–53—140 15/25</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>16</td>
<td>7:125–53—141 16/25</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>17</td>
<td>7:125–53—142 17/25</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>18</td>
<td>7:125–53—143 18/25</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>19</td>
<td>7:125–53—144 19/25</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>20</td>
<td>7:125–53—145 20/25</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>21</td>
<td>7:125–53—146 21/25</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>22</td>
<td>7:125–53—147 22/25</td>
</tr>
<tr>
<td>T100</td>
<td>4319</td>
<td>Transversales</td>
<td>24</td>
<td>7:125–53—149 24/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Perfil Longitudinal</td>
<td>1</td>
<td>7:125–53—151 1/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Perfil Longitudinal</td>
<td>2</td>
<td>7:125–53—152 2/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Perfil Longitudinal</td>
<td>3</td>
<td>7:125–53—153 3/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Perfil Longitudinal</td>
<td>4</td>
<td>7:125–53—154 4/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Perfil Longitudinal</td>
<td>5</td>
<td>7:125–53—155 5/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>6</td>
<td>7:125–53—156 6/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>7</td>
<td>7:125–53—157 7/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>8</td>
<td>7:125–53—158 8/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>9</td>
<td>7:125–53—159 9/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>10</td>
<td>7:125–53—160 10/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>12</td>
<td>7:125–53—162 12/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>13</td>
<td>7:125–53—163 13/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>14</td>
<td>7:125–53—164 14/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>15</td>
<td>7:125–53—165 15/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>16</td>
<td>7:125–53—166 16/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>17</td>
<td>7:125–53—167 17/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>18</td>
<td>7:125–53—168 18/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>19</td>
<td>7:125–53—169 19/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>20</td>
<td>7:125–53—170 20/28</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>21</td>
<td>7:125–53—171 21/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>22</td>
<td>7:125–53—172 22/25</td>
</tr>
<tr>
<td>T100M</td>
<td>4320</td>
<td>Transversales</td>
<td>24</td>
<td>7:125–53—174 24/25</td>
</tr>
<tr>
<td>T2</td>
<td>4321</td>
<td>Áreas de inundación 1:2000</td>
<td>1</td>
<td>7:125–53—176 1/5</td>
</tr>
<tr>
<td>T2</td>
<td>4321</td>
<td>Áreas de inundación 1:2000</td>
<td>2</td>
<td>7:125–53—177 2/5</td>
</tr>
<tr>
<td>T2</td>
<td>4321</td>
<td>Áreas de inundación 1:2000</td>
<td>4</td>
<td>7:125–53—179 4/5</td>
</tr>
<tr>
<td>T2</td>
<td>4321</td>
<td>Áreas de inundación 1:2000</td>
<td>5</td>
<td>7:125–53—180 5/5</td>
</tr>
<tr>
<td>T2</td>
<td>4321</td>
<td>Áreas de inundación 1:2000 y 1:10000</td>
<td>6</td>
<td>7:125–53—181 1/1</td>
</tr>
<tr>
<td>T2</td>
<td>4321</td>
<td>Resultado Modelo 1 Calado 1:5000 y 1:10000</td>
<td>7</td>
<td>7:125–53—182 1/1</td>
</tr>
<tr>
<td>T2</td>
<td>4321</td>
<td>Resultado Modelo 2 Calado 1:5000 y 1:10000</td>
<td>8</td>
<td>7:125–53—183 1/1</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>-----</td>
<td>--------------------</td>
</tr>
<tr>
<td>T2</td>
<td>4321</td>
<td>Resultado Modelo 1 Velocidad 1:5000 y 1:10000</td>
<td>9</td>
<td>7:125–53—184 1/1</td>
</tr>
<tr>
<td>T2</td>
<td>4321</td>
<td>Resultado Modelo 2 Velocidad 1:5000 y 1:10000</td>
<td>10</td>
<td>7:125–53—185 1/1</td>
</tr>
<tr>
<td>T5</td>
<td>4322</td>
<td>Áreas de inundación 1:2000</td>
<td>1</td>
<td>7:125–53—186 1/5</td>
</tr>
<tr>
<td>T5</td>
<td>4322</td>
<td>Áreas de inundación 1:2000</td>
<td>2</td>
<td>7:125–53—187 2/5</td>
</tr>
<tr>
<td>T5</td>
<td>4322</td>
<td>Áreas de inundación 1:2000</td>
<td>5</td>
<td>7:125–53—190 5/5</td>
</tr>
<tr>
<td>T5</td>
<td>4322</td>
<td>Áreas de inundación 1:5000 y 1:10000</td>
<td>6</td>
<td>7:125–53—191 1/1</td>
</tr>
<tr>
<td>T5</td>
<td>4322</td>
<td>Resultado Modelo 1 Calado 1:5000 y 1:10000</td>
<td>7</td>
<td>7:125–53—192 1/1</td>
</tr>
<tr>
<td>T5</td>
<td>4322</td>
<td>Resultado Modelo 2 Calado 1:5000 y 1:10000</td>
<td>8</td>
<td>7:125–53—193 1/1</td>
</tr>
<tr>
<td>T5</td>
<td>4322</td>
<td>Resultado Modelo 1 Velocidad 1:5000 y 1:10000</td>
<td>9</td>
<td>7:125–53—194 1/1</td>
</tr>
<tr>
<td>T5</td>
<td>4322</td>
<td>Resultado Modelo 2 Velocidad 1:5000 y 1:10000</td>
<td>10</td>
<td>7:125–53—195 1/1</td>
</tr>
<tr>
<td>T10</td>
<td>4323</td>
<td>Áreas de inundación 1:2000</td>
<td>1</td>
<td>7:125–53—196 1/5</td>
</tr>
<tr>
<td>T10</td>
<td>4323</td>
<td>Áreas de inundación 1:2000</td>
<td>2</td>
<td>7:125–53—197 2/5</td>
</tr>
<tr>
<td>T10</td>
<td>4323</td>
<td>Áreas de inundación 1:5000 y 1:10000</td>
<td>6</td>
<td>7:125–53—201 1/1</td>
</tr>
<tr>
<td>T10</td>
<td>4323</td>
<td>Resultado Modelo 1 Calado 1:5000 y 1:10000</td>
<td>7</td>
<td>7:125–53—202 1/1</td>
</tr>
<tr>
<td>T10</td>
<td>4323</td>
<td>Resultado Modelo 2 Calado 1:5000 y 1:10000</td>
<td>8</td>
<td>7:125–53—203 1/1</td>
</tr>
<tr>
<td>T10</td>
<td>4323</td>
<td>Resultado Modelo 1 Velocidad 1:5000 y 1:10000</td>
<td>9</td>
<td>7:125–53—204 1/1</td>
</tr>
<tr>
<td>T10</td>
<td>4323</td>
<td>Resultado Modelo 2 Velocidad 1:5000 y 1:10000</td>
<td>10</td>
<td>7:125–53—205 1/1</td>
</tr>
<tr>
<td>T25</td>
<td>4324</td>
<td>Áreas de inundación 1:2000</td>
<td>1</td>
<td>7:125–53—206 1/5</td>
</tr>
<tr>
<td>T25</td>
<td>4324</td>
<td>Áreas de inundación 1:5000 y 1:10000</td>
<td>6</td>
<td>7:125–53—211 1/1</td>
</tr>
<tr>
<td>T25</td>
<td>4324</td>
<td>Resultado Modelo 1 Calado 1:5000 y 1:10000</td>
<td>7</td>
<td>7:125–53—212 1/1</td>
</tr>
<tr>
<td>T25</td>
<td>4324</td>
<td>Resultado Modelo 2 Calado 1:5000 y 1:10000</td>
<td>8</td>
<td>7:125–53—213 1/1</td>
</tr>
<tr>
<td>T25</td>
<td>4324</td>
<td>Resultado Modelo 1 Velocidad 1:5000 y 1:10000</td>
<td>9</td>
<td>7:125–53—214 1/1</td>
</tr>
<tr>
<td>T25</td>
<td>4324</td>
<td>Resultado Modelo 2 Velocidad 1:5000 y 1:10000</td>
<td>10</td>
<td>7:125–53—215 1/1</td>
</tr>
<tr>
<td>Prueba</td>
<td>Código</td>
<td>Descripción</td>
<td>Incremento</td>
<td>Superficie</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>T50</td>
<td>4325</td>
<td>Áreas de inundación 1:2000</td>
<td>1</td>
<td>7:125–53—216 1/5</td>
</tr>
<tr>
<td>T50</td>
<td>4325</td>
<td>Áreas de inundación 1:5000 y 1:10000</td>
<td>6</td>
<td>7:125–53—221 1/1</td>
</tr>
<tr>
<td>T50</td>
<td>4325</td>
<td>Resultado Modelo 1 Calado</td>
<td>7</td>
<td>7:125–53—222 1/1</td>
</tr>
<tr>
<td>T50</td>
<td>4325</td>
<td>Resultado Modelo 2 Calado</td>
<td>8</td>
<td>7:125–53—223 1/1</td>
</tr>
<tr>
<td>T50</td>
<td>4325</td>
<td>Resultado Modelo 1 Velocidad</td>
<td>9</td>
<td>7:125–53—224 1/1</td>
</tr>
<tr>
<td>T50</td>
<td>4325</td>
<td>Resultado Modelo 2 Velocidad</td>
<td>10</td>
<td>7:125–53—225 1/1</td>
</tr>
<tr>
<td>T100</td>
<td>4326</td>
<td>Áreas de inundación 1:2000</td>
<td>1</td>
<td>7:125–53—226 1/5</td>
</tr>
<tr>
<td>T100</td>
<td>4326</td>
<td>Áreas de inundación 1:2000</td>
<td>2</td>
<td>7:125–53—227 2/5</td>
</tr>
<tr>
<td>T100</td>
<td>4326</td>
<td>Áreas de inundación 1:2000</td>
<td>3</td>
<td>7:125–53—228 3/5</td>
</tr>
<tr>
<td>T100</td>
<td>4326</td>
<td>Áreas de inundación 1:2000</td>
<td>4</td>
<td>7:125–53—229 4/5</td>
</tr>
<tr>
<td>T100</td>
<td>4326</td>
<td>Áreas de inundación 1:2000</td>
<td>5</td>
<td>7:125–53—230 5/5</td>
</tr>
<tr>
<td>T100</td>
<td>4326</td>
<td>Áreas de inundación 1:5000 y 1:10000</td>
<td>6</td>
<td>7:125–53—231 1/1</td>
</tr>
<tr>
<td>T100</td>
<td>4326</td>
<td>Resultado Modelo 1 Calado</td>
<td>7</td>
<td>7:125–53—232 1/1</td>
</tr>
<tr>
<td>T100</td>
<td>4326</td>
<td>Resultado Modelo 2 Calado</td>
<td>8</td>
<td>7:125–53—233 1/1</td>
</tr>
<tr>
<td>T100</td>
<td>4326</td>
<td>Resultado Modelo 1 Velocidad</td>
<td>9</td>
<td>7:125–53—234 1/1</td>
</tr>
<tr>
<td>T100</td>
<td>4326</td>
<td>Resultado Modelo 2 Velocidad</td>
<td>10</td>
<td>7:125–53—235 1/1</td>
</tr>
<tr>
<td>T100M</td>
<td>4327</td>
<td>Áreas de inundación 1:2000</td>
<td>1</td>
<td>7:125–53—236 1/5</td>
</tr>
<tr>
<td>T100M</td>
<td>4327</td>
<td>Áreas de inundación 1:2000</td>
<td>2</td>
<td>7:125–53—237 2/5</td>
</tr>
<tr>
<td>T100M</td>
<td>4327</td>
<td>Áreas de inundación 1:2000</td>
<td>3</td>
<td>7:125–53—238 3/5</td>
</tr>
<tr>
<td>T100M</td>
<td>4327</td>
<td>Áreas de inundación 1:2000</td>
<td>4</td>
<td>7:125–53—239 4/5</td>
</tr>
<tr>
<td>T100M</td>
<td>4327</td>
<td>Áreas de inundación 1:2000</td>
<td>5</td>
<td>7:125–53—240 5/5</td>
</tr>
<tr>
<td>T100M</td>
<td>4327</td>
<td>Áreas de inundación 1:5000 y 1:10000</td>
<td>6</td>
<td>7:125–53—241 1/1</td>
</tr>
<tr>
<td>T100M</td>
<td>4327</td>
<td>Resultado Modelo 1 Calado</td>
<td>7</td>
<td>7:125–53—242 1/1</td>
</tr>
<tr>
<td>T100M</td>
<td>4327</td>
<td>Resultado Modelo 2 Calado</td>
<td>8</td>
<td>7:125–53—243 1/1</td>
</tr>
<tr>
<td>T100M</td>
<td>4327</td>
<td>Resultado Modelo 1 Velocidad</td>
<td>9</td>
<td>7:125–53—244 1/1</td>
</tr>
<tr>
<td>T100M</td>
<td>4327</td>
<td>Resultado Modelo 2 Velocidad</td>
<td>10</td>
<td>7:125–53—245 1/1</td>
</tr>
</tbody>
</table>
ANEXO IV – TABLAS REVANCHAS
Anexo IV - Tabla 1: Revanchas de la rivera oeste para distintos periodos de retorno (en años). En rojo revanchas menores a 0 (sobrepaso) y en azul los revanchas entre 0 y 1m.